• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

non experimental method definition

Home Market Research

Non-experimental research: What it is, overview & advantages

non-experimental-research

Non-experimental research is the type of research that lacks an independent variable. Instead, the researcher observes the context in which the phenomenon occurs and analyzes it to obtain information.

Unlike experimental research , where the variables are held constant, non-experimental research happens during the study when the researcher cannot control, manipulate or alter the subjects but relies on interpretation or observations to conclude.

This means that the method must not rely on correlations, surveys , or case studies and cannot demonstrate an actual cause and effect relationship.

Characteristics of non-experimental research

Some of the essential characteristics of non-experimental research are necessary for the final results. Let’s talk about them to identify the most critical parts of them.

characteristics of non-experimental research

  • Most studies are based on events that occurred previously and are analyzed later.
  • In this method, controlled experiments are not performed for reasons such as ethics or morality.
  • No study samples are created; on the contrary, the samples or participants already exist and develop in their environment.
  • The researcher does not intervene directly in the environment of the sample.
  • This method studies the phenomena exactly as they occurred.

Types of non-experimental research

Non-experimental research can take the following forms:

Cross-sectional research : Cross-sectional research is used to observe and analyze the exact time of the research to cover various study groups or samples. This type of research is divided into:

  • Descriptive: When values are observed where one or more variables are presented.
  • Causal: It is responsible for explaining the reasons and relationship that exists between variables in a given time.

Longitudinal research: In a longitudinal study , researchers aim to analyze the changes and development of the relationships between variables over time. Longitudinal research can be divided into:

  • Trend: When they study the changes faced by the study group in general.
  • Group evolution: When the study group is a smaller sample.
  • Panel: It is in charge of analyzing individual and group changes to discover the factor that produces them.

LEARN ABOUT: Quasi-experimental Research

When to use non-experimental research

Non-experimental research can be applied in the following ways:

  • When the research question may be about one variable rather than a statistical relationship about two variables.
  • There is a non-causal statistical relationship between variables in the research question.
  • The research question has a causal research relationship, but the independent variable cannot be manipulated.
  • In exploratory or broad research where a particular experience is confronted.

Advantages and disadvantages

Some advantages of non-experimental research are:

  • It is very flexible during the research process
  • The cause of the phenomenon is known, and the effect it has is investigated.
  • The researcher can define the characteristics of the study group.

Among the disadvantages of non-experimental research are:

  • The groups are not representative of the entire population.
  • Errors in the methodology may occur, leading to research biases .

Non-experimental research is based on the observation of phenomena in their natural environment. In this way, they can be studied later to reach a conclusion.

Difference between experimental and non-experimental research

Experimental research involves changing variables and randomly assigning conditions to participants. As it can determine the cause, experimental research designs are used for research in medicine, biology, and social science. 

Experimental research designs have strict standards for control and establishing validity. Although they may need many resources, they can lead to very interesting results.

Non-experimental research, on the other hand, is usually descriptive or correlational without any explicit changes done by the researcher. You simply describe the situation as it is, or describe a relationship between variables. Without any control, it is difficult to determine causal effects. The validity remains a concern in this type of research. However, it’s’ more regarding the measurements instead of the effects.

LEARN MORE: Descriptive Research vs Correlational Research

Whether you should choose experimental research or non-experimental research design depends on your goals and resources. If you need any help with how to conduct research and collect relevant data, or have queries regarding the best approach for your research goals, contact us today! You can create an account with our survey software and avail of 88+ features including dashboard and reporting for free.

Create a free account

MORE LIKE THIS

CultureAmp vs Qualtrics

CultureAmp vs Qualtrics: The Best Employee Experience Platform

Dec 16, 2024

Data Quality Dimensions

Data Quality Dimensions: What are They & How to Improve

Dec 10, 2024

NPS Analysis

NPS Analysis: Boosting Customer Retention and Satisfaction

Dec 9, 2024

non experimental method definition

What Can We Expect Next? — Tuesday CX Thoughts

Dec 3, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

6.1 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach will suffice. But the two approaches can also be used to address the same research question in complementary ways. For example, Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into three broad categories: cross-sectional research, correlational research, and observational research. 

First, cross-sectional research  involves comparing two or more pre-existing groups of people. What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a cross-sectional study because the researcher did not manipulate the students’ nationalities. As another example, if we wanted to compare the memory test performance of a group of cannabis users with a group of non-users, this would be considered a cross-sectional study because for ethical and practical reasons we would not be able to randomly assign participants to the cannabis user and non-user groups. Rather we would need to compare these pre-existing groups which could introduce a selection bias (the groups may differ in other ways that affect their responses on the dependent variable). For instance, cannabis users are more likely to use more alcohol and other drugs and these differences may account for differences in the dependent variable across groups, rather than cannabis use per se.

Cross-sectional designs are commonly used by developmental psychologists who study aging and by researchers interested in sex differences. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect) rather than a direct effect of age. For this reason, longitudinal studies in which one group of people is followed as they age offer a superior means of studying the effects of aging. Once again, cross-sectional designs are also commonly used to study sex differences. Since researchers cannot practically or ethically manipulate the sex of their participants they must rely on cross-sectional designs to compare groups of men and women on different outcomes (e.g., verbal ability, substance use, depression). Using these designs researchers have discovered that men are more likely than women to suffer from substance abuse problems while women are more likely than men to suffer from depression. But, using this design it is unclear what is causing these differences. So, using this design it is unclear whether these differences are due to environmental factors like socialization or biological factors like hormones?

When researchers use a participant characteristic to create groups (nationality, cannabis use, age, sex), the independent variable is usually referred to as an experimenter-selected independent variable (as opposed to the experimenter-manipulated independent variables used in experimental research). Figure 6.1 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a cross-sectional study because it is unclear whether the independent variable was manipulated by the researcher or simply selected by the researcher. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then the independent variable was experimenter-manipulated and it is a true experiment. If the researcher simply asked participants whether they made daily to-do lists or not, then the independent variable it is experimenter-selected and the study is cross-sectional. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a cross-sectional study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead. Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed. The crucial point is that what defines a study as experimental or cross-sectional l is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 6.1  Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Second, the most common type of non-experimental research conducted in Psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.  More specifically, in correlational research , the researcher measures two continuous variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related. Correlational research is very similar to cross-sectional research, and sometimes these terms are used interchangeably. The distinction that will be made in this book is that, rather than comparing two or more pre-existing groups of people as is done with cross-sectional research, correlational research involves correlating two continuous variables (groups are not formed and compared).

Third,   observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.2  shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) is in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 7.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Figure 6.2 Internal Validity of Correlation, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlation studies lower still.

Notice also in  Figure 6.2  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

Key Takeaways

  • Non-experimental research is research that lacks the manipulation of an independent variable.
  • There are two broad types of non-experimental research. Correlational research that focuses on statistical relationships between variables that are measured but not manipulated, and observational research in which participants are observed and their behavior is recorded without the researcher interfering or manipulating any variables.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.
  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Creative Commons License

Share This Book

  • Increase Font Size

discount

Up to 65% off on all yearly plans! 🎁 Start fresh with a yearly plan. Now 65% off! ❄️ 🏷️

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

non experimental method definition

HubSpot CRM

non experimental method definition

Google Sheets

non experimental method definition

Google Analytics

non experimental method definition

Microsoft Excel

non experimental method definition

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

non experimental method definition

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is non-experimental research: Definition, types & examples

What is non-experimental research: Definition, types & examples

Defne Çobanoğlu

The experimentation method is very useful for getting information on a specific subject. However, when experimenting is not possible or practical, there is another way of collecting data for those interested. It's a non-experimental way, to say the least.

In this article, we have gathered information on non-experimental research, clearly defined what it is and when one should use it, and listed the types of non-experimental research. We also gave some useful examples to paint a better picture. Let us get started. 

  • What is non-experimental research?

Non-experimental research is a type of research design that is based on observation and measuring instead of experimentation with randomly assigned participants.

What characterizes this research design is the fact that it lacks the manipulation of independent variables . Because of this fact, the non-experimental research is based on naturally occurring conditions, and there is no involvement of external interventions. Therefore, the researchers doing this method must not rely heavily on interviews, surveys , or case studies.

  • When to use non-experimental research?

An experiment is done when a researcher is investigating the relationship between one or two phenomena and has a theory or hypothesis on the relationship between two variables that are involved. The researcher can carry out an experiment when it is ethical, possible, and feasible to do one.

However, when an experiment can not be done because of a limitation, then they decide to opt for a non-experimental research design . Non-experimental research is considered preferable in some conditions, including:

  • When the manipulation of the independent variable is not possible because of ethical or practical concerns
  • When the subjects of an experimental design can not be randomly assigned to treatments.
  • When the research question is too extensive or it relates to a general experience.
  • When researchers want to do a starter research before investing in more extensive research.
  • When the research question is about the statistical relationship between variables , but in a noncausal context.
  • Characteristics of non-experimental research

Non-experimental research has some characteristics that clearly define the framework of this research method. They provide a clear distinction between experimental design and non-experimental design. Let us see some of them:

  • Non-experimental research does not involve the manipulation of variables .
  • The aim of this research type is to explore the factors as they naturally occur .
  • This method is used when experimentation is not possible because of ethical or practical reasons .
  • Instead of creating a sample or participant group, the existing groups or natural thresholds are used during the research.
  • This research method is not about finding causality between two variables.
  • Most studies are done on past events or historical occurrences to make sense of specific research questions.
  • Types of non-experimental research

Non-experimental research types

Non-experimental research types

What makes research non-experimental research is the fact that the researcher does not manipulate the factors, does not randomly assign the participants, and observes the existing groups. But this research method can also be divided into different types. These types are:

Correlational research:

In correlation studies, the researcher does not manipulate the variables and is not interested in controlling the extraneous variables. They only observe and assess the relationship between them. For example, a researcher examines students’ study hours every day and their overall academic performance. The positive correlation this between study hours and academic performance suggests a statistical association. 

Quasi-experimental research:

In quasi-experimental research, the researcher does not randomly assign the participants into two groups. Because you can not deliberately deprive someone of treatment, the researcher uses natural thresholds or dividing points . For example, examining students from two different high schools with different education methods.

Cross-sectional research:

In cross-sectional research, the researcher studies and compares a portion of a population at the same time . It does not involve random assignment or any outside manipulation. For example, a study on smokers and non-smokers in a specific area.

Observational research:

In observational research, the researcher once again does not manipulate any aspect of the study, and their main focus is observation of the participants . For example, a researcher examining a group of children playing in a playground would be a good example.

  • Non-experimental research examples

Non-experimental research is a good way of collecting information and exploring relationships between variables. It can be used in numerous fields, from social sciences, economics, psychology, education, and market research. When gathering information using secondary research is not enough and an experiment can not be done, this method can bring out new information.

Non-experimental research example #1

Imagine a researcher who wants to see the connection between mobile phone usage before bedtime and the amount of sleep adults get in a night . They can gather a group of individuals to observe and present them with some questions asking about the details of their day, frequency and duration of phone usage, quality of sleep, etc . And observe them by analyzing the findings.

Non-experimental research example #2

Imagine a researcher who wants to explore the correlation between job satisfaction levels among employees and what are the factors that affect this . The researcher can gather all the information they get about the employees’ ages, sexes, positions in the company, working patterns, demographic information, etc . 

The research provides the researcher with all the information to make an analysis to identify correlations and patterns. Then, it is possible for researchers and administrators to make informed predictions.

  • Frequently asked questions about non-experimental research

When not to use non-experimental research?

There are some situations where non-experimental research is not suitable or the best choice. For example, the aim of non-experimental research is not about finding causality therefore, if the researcher wants to explore the relationship between two variables, then this method is not for them. Also, if the control over the variables is extremely important to the test of a theory, then experimentation is a more appropriate option.

What is the difference between experimental and non-experimental research?

Experimental research is an example of primary research where the researcher takes control of all the variables, randomly assigns the participants into different groups, and studies them in a pre-determined environment to test a hypothesis. 

On the contrary, non-experimental research does not intervene in any way and only observes and studies the participants in their natural environments to make sense of a phenomenon

What makes a quasi-experiment a non-experiment?

The same as true experimentation, quasi-experiment research also aims to explore a cause-and-effect relationship between independent and dependent variables. However, in quasi-experimental research, the participants are not randomly selected. They are assigned to groups based on non-random criteria .

Is a survey a non-experimental study?

Yes, as the main purpose of a survey or questionnaire is to collect information from participants without outside interference, it makes the survey a non-experimental study. Surveys are used by researchers when experimentation is not possible because of ethical reasons, but first-hand data is needed

What is non-experimental data?

Non-experimental data is data collected by researchers via using non-experimental methods such as observations, interpretation, and interactions. Non-experimental data could both be qualitative or quantitative, depending on the situation.

Advantages of non-experimental research

Non-experimental research has its positive sides that a researcher should have in mind when going through a study. They can start their research by going through the advantages. These advantages are:

  • It is used to observe and analyze past events .
  • This method is more affordable than a true experiment .
  • As the researcher can adapt the methods during the study, this research type is more flexible than an experimental study.
  • This method allows the researchers to answer specific questions .

Disadvantages of non-experimental research

Even though non-experimental research has its advantages, it also has some disadvantages a researcher should be mindful of. Here are some of them:

  • The findings of non-experimental research can not be generalized to the whole population. Therefore, it has low external validity .
  • This research is used to explore only a single variable .
  • Non-experimental research designs are prone to researcher bias and may not produce neutral results.
  • Final words

A non-experimental study differs from an experimental study in that there is no intervention or change of internal or extraneous elements. It is a smart way to collect information without the limitations of experimentation. These limitations could be about ethical or practical problems. When you can not do proper experimentation, your other option is to study existing conditions and groups to draw conclusions. This is a non-experimental design .

In this article, we have gathered information on non-experimental research to shed light on the details of this research method. If you are thinking of doing a study, make sure to have this information in mind. And lastly, do not forget to visit our articles on other research methods and so much more!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

100+ Pay-per-click statistics to improve your traffic

100+ Pay-per-click statistics to improve your traffic

Fatih Özkan

What is Business Research: Methods, Types & Examples

What is Business Research: Methods, Types & Examples

The top 5 Kahoot! Alternatives: Pros, cons & pricing

The top 5 Kahoot! Alternatives: Pros, cons & pricing

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Non-Experimental Research

28 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., how accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach is appropriate. But the two approaches can also be used to address the same research question in complementary ways. For example, in Milgram’s original (non-experimental) obedience study, he was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. However,  Milgram subsequently conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into two broad categories: correlational research and observational research. 

The most common type of non-experimental research conducted in psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable. More specifically, in correlational research , the researcher measures two variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related.

Observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories).

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When psychologists wish to study change over time (for example, when developmental psychologists wish to study aging) they usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect ) rather than a direct effect of age. For this reason, longitudinal studies , in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging. However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the researcher and the participants. A third approach, known as cross-sequential studies , combines elements of both cross-sectional and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in different age groups. For example, they might measure changes over a ten year period among participants who at the start of the study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first assessment. Further, by following the different age groups over time they can subsequently determine whether the original differences they found across the age groups are due to true age effects or cohort effects.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in psychiatric wards was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) falls in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 6.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in  Figure 6.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational (non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

A research that lacks the manipulation of an independent variable.

Research that is non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.

Research that is non-experimental because it focuses on recording systemic observations of behavior in a natural or laboratory setting without manipulating anything.

Studies that involve comparing two or more pre-existing groups of people (e.g., children at different stages of development).

Differences between the groups may reflect the generation that people come from rather than a direct effect of age.

Studies in which one group of people are followed over time as they age.

Studies in which researchers follow people in different age groups in a smaller period of time.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 7: Nonexperimental Research

Overview of Nonexperimental Research

Learning Objectives

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research  is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are  not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This distinction is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this inability does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in  Chapter 6 , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which preferring nonexperimental research can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behaviour have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] . Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [2] .

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it  single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This detail is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this design would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied  compares  with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied thereby introducing another variable.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In  quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256). [3] Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 7.1  shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it  could  be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

""

Notice also in  Figure 7.1  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in  Chapter 5.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyses the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

Research that focuses on a single variable rather than a statistical relationship between two variables.

The researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them.

The researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

non experimental method definition

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.1 Overview of Nonexperimental Research

Learning objectives.

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This is because while experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in Chapter 6 “Experimental Research” , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which this can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001). Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974).

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied compares with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In qualitative research , the data are usually nonnumerical and are analyzed using nonstatistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256).

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable. Figure 7.1 shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it could be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in Figure 7.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyzes the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.

Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage.

Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row.

Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

TestSiteForMe

Non-Experimental Studies in Research | Overview & Examples

Non-experimental studies are a vital and often overlooked part of research. In this article, we’ll explain the definition, types and characteristics of non-experimental studies as well as their advantages and disadvantages. Following this, we’ll go over some examples of non-experimental research across a range of different fields and provide some tips for undertaking these studies. Finally, we’ll explain how non-experimental studies can be combined with experimental studies to help strengthen your research.

Non-experimental studies are different from experimental studies in that they don’t involve manipulating variables. They don’t have a control group either. Instead, they rely on observation and analysis of existing data or natural events in an attempt to gain valuable insights into our understanding of the world.

Whether you’re a research student in psychology, sociology, education, or any other field, this article will give you a comprehensive overview of non-experimental studies and their role in research. So if you want to learn more about these critical research methods, keep reading!

Definition of Non-Experimental Studies

As mentioned before, non-experimental studies, also known as observational studies , are research methods that are used to observe and describe a phenomenon without manipulating a single variable. In other words, non-experimental studies don’t involve the controlled manipulation of an independent variable in order to see what effect it has on a dependent variable. On the contrary, non-experimental research relies on naturally occurring or existing data and do not involve any interventions from those undertaking the research.

Differences Between Experimental and Non-Experimental Studies

There are several critical differences between experimental and non-experimental studies that you ought to be aware of:

  • Control : In experimental studies, the researcher has complete control over the independent variable and can manipulate it to study its effects on the dependent variable. In non-experimental research, the researcher doesn’t have control over the variables; they can only observe and describe them.
  • Intervention : Experimental studies involve manipulating variables through some form of intervention, whether it be administering a treatment or altering a condition. Non-experimental studies, on the other hand, don’t involve any intervention. They simply describe the variables as they exist in their natural state.
  • Cause and effect : Experimental studies are designed to establish cause and effect relationships between variables. Non-experimental studies cannot establish cause and effect because they don’t involve changing variables, so it would be impossible to pinpoint certain effects onto any one thing.
  • Randomization : Experimental studies typically involve using randomization to assign subjects to treatment or control groups. Non-experimental research do not involve randomization .
  • Sample size : Experimental studies typically involve smaller sample sizes because they are more controlled and require fewer subjects to establish statistical significance. Non-experimental studies often involve larger sample sizes because they do not involve the manipulation of variables and therefore require more subjects to observe and describe the phenomenon.

In short, non-experimental studies help describe and understand phenomena but are not as helpful in establishing cause and effect relationships. However, non-experimental studies can be combined with experimental studies to provide a more comprehensive understanding of a phenomenon.

Types of Non-Experimental Studies

Researchers can use several types of non-experimental studies to investigate a research question or phenomenon. These include descriptive studies, correlational studies, and case studies.

Types of Non-experimental studies

1. Descriptive Studies

Descriptive studies are used to describe the characteristics of a group or population. These studies are often used to identify patterns or trends in a particular phenomenon. Researchers typically use survey methods or observational techniques to gather data in descriptive studies.

Examples of descriptive studies include surveys, observational studies, and demographic studies.

2. Correlational Studies

Correlational studies investigate the relationship between two or more variables. These studies do not seek to manipulate variables or determine cause and effect but rather explore whether there is a correlation between the variables being studied.

Researchers typically use statistical techniques to analyze data collected in correlational studies.

Examples of correlational studies include studies that investigate the causal relationship between exercise and mental health or the statistical relationship between social media use and academic performance.

3. Case Studies

Case studies involve an in-depth examination of a single individual, group, or event. These studies are often used to explore complex phenomena or to provide insight into a specific situation or context. Researchers typically use various methods to collect data in case studies, including interviews, observations, and document analysis.

Examples of case studies include studies that investigate the experiences of a single individual with a particular medical condition or the cultural dynamics of a small community.

Non-experimental studies provide valuable information and offer unique insights into a research question or phenomenon. While they have their limitations, they can be an essential part of the research process and can be used in combination with experimental studies to provide a more complete understanding of a topic.

Advantages of Non-Experimental Studies

Non-experimental studies have several advantages that make them useful for certain types of research. Some of the main benefits of non-experimental studies include:

  • Greater flexibility : Non-experimental studies are often more flexible than experimental studies, as they do not require the researcher to manipulate variables or control for extraneous factors. This means that researchers can more easily adapt their methods to changing circumstances or unexpected results.
  • Greater realism : Non-experimental studies often provide a more realistic and naturalistic portrayal of the research setting, as they do not involve the artificial manipulation of extraneous variables. This can make the results of non-experimental studies more generalizable to real-world situations.
  • Greater cost-effectiveness : Non-experimental studies are generally less expensive than experimental studies, as they do not require specialized equipment or procedures. This makes non-experimental studies a more cost-effective option for researchers on a budget.

Disadvantages of Non-Experimental Studies

Despite their advantages, non-experimental research also has several limitations that should be considered when deciding whether to use this type of study in research. Some of these include:

  • Lack of control over variables : One of the main limitations of non-experimental studies is the lack of control over variables. Researchers cannot manipulate variables or control for extraneous factors, so it is more difficult to establish cause and effect relationships.
  • Limited generalizability : They often have limited generalizability, as they are conducted in a specific context or population. This means that the results of non-experimental studies may not be applicable to other populations or settings.
  • Difficulty measuring change : Non-experimental studies are typically conducted at a single point in time, which makes it difficult to measure change over time. This can be a problem if the research question examines changes in behaviour or attitudes over time.
  • Potential bias : Non-experimental studies are prone to bias, as the researcher cannot control all factors that may affect the results. This means that the results of non-experimental studies may be influenced by factors not accounted for in the study design.

Examples of Non-Experimental Studies in Different Fields

  • Case studies : These are in-depth studies of a single individual or small group, often used to explore rare or unusual phenomena. For example, a case study of a person with a rare neurological disorder can provide insight into the symptoms and treatment options for that disorder.
  • Surveys : Surveys involve collecting data from a large number of people using self-report measures such as questionnaires or interviews. Surveys can be used to study various topics, from attitudes and beliefs to behaviours and experiences. For example, a survey of college students’ attitudes towards mental health treatment could provide valuable information for addressing the needs of this population.
  • Observational studies : Observational studies involve watching and recording the behaviour of people or animals in a natural setting. These studies can help understand social interactions and other complex behaviours. For example, an observational study of parenting styles in different cultures could provide insight into how parenting practices affect child development.
  • Ethnographies : Ethnographies involve detailed observations and interviews with members of a particular culture or community. They are often used to understand social norms, values, and beliefs in a specific group. For example, an ethnography of a rural community might examine how traditional gender roles are maintained and how they affect the lives of men and women in that community.
  • Content analysis : This involves systematically analyzing written or spoken texts (such as books, newspapers, or social media posts) to understand patterns or themes within a particular culture or society. For example, a content analysis of news articles about immigration might reveal underlying biases or stereotypes about immigrants.
  • Longitudinal studies : These are studies that follow the same group of people over an extended period of time. They can be used to understand how social or environmental factors affect people’s lives over time. For example, a longitudinal study of first-generation college students might examine how family and community support, financial stress, and other factors impact their academic success.
  • Action research : This involves researchers actively collaborating with teachers and students in a particular educational setting to identify problems and develop solutions. Action research can be useful for understanding and improving teaching and learning practices. For example, an action research project might involve a teacher working with researchers to design and implement a new teaching method and then evaluating the results to see if it was successful.
  • Narrative inquiry : This involves collecting and analyzing stories or narratives from individuals or groups to understand their experiences and perspectives. Narrative inquiry is often used in education to understand how students learn and how teachers teach. For example, a narrative inquiry study of high school students’ experiences with bullying might help educators understand the impact of bullying on academic performance and mental health.
  • Ethnographic case studies : These are in-depth studies of a particular school or classroom that use observations, interviews, and other data collection methods to understand the social and cultural factors that shape the educational experience. Ethnographic case studies can provide valuable insights into how education policies and practices affect students and teachers. For example, an ethnographic case study of a bilingual classroom might explore how language acquisition and cultural differences impact students’ learning.

How to Conduct Non-Experimental Studies: Tips and Best Practices

Conducting a non-experimental study can be a challenging task for research students. However, with proper planning and execution, it is possible to produce high-quality research using this method. Here are some tips and best practices for conducting a non-experimental study:

1. Planning and Designing the Study

  • Identify the research question and objectives : Clearly define your study’s research question and objectives. This will help you focus on the specific aspects of the research that you want to explore.
  • Determine the study sample size and sampling method : Consider the size and characteristics of the sample you need to answer your research question accurately. Choose a sampling method that is appropriate for your study and ensures that the sample is representative of the population. This will help make sure your findings will be backed by strong evidence.
  • Consider the limitations of the study : Be aware of the limitations of your study, including any biases or confounding variables that may affect the results. Consider how you can address these limitations in your original study design.
  • Develop a research plan : Create a detailed research plan outlining the steps you will take to conduct the study. This will help you stay organized and on track throughout the research process.

2. Data Collection and Analysis

  • Choose appropriate data collection methods : Select data collection methods appropriate for your research question and study design. This could include surveys, interviews, observations, or existing data sources.
  • Ensure the validity and reliability of data collection methods : Ensure that the data collection methods you use are valid and reliable. Validity refers to whether the data accurately measures what it is intended to measure. Reliability refers to the consistency of the results.
  • Use appropriate data analysis techniques : Choose data analysis techniques appropriate for the type of data you have collected and the research question you are trying to answer. This could include descriptive statistics, correlation analysis, or regression analysis.

3. Interpreting and Reporting Results

  • Interpret the results accurately: Carefully interpret the results of your study, keeping in mind the study’s limitations and possible biases or confounding variables .
  • Report the results clearly and concisely : Present the results of your study clearly and concisely, using appropriate graphs, tables, and statistical analyses to illustrate the findings.
  • Conclusion: Summarize the main findings and implications of the study : In the conclusion, summarize the study’s main findings and discuss their implications for the research field. Consider how the results of the study contribute to the existing body of knowledge and identify any areas for future research.

How to Use Non-Experimental Studies in Combination with Experimental Studies

There are two main ways to combine non-experimental studies with experimental studies: triangulation and meta-analysis.

Combining experimental and non-experimental studies

Triangulation

Triangulation is the use of multiple methods, data sources, or perspectives in a study to increase the validity of the results. This can include combining experimental and non-experimental studies.

For example, a researcher may conduct an experimental study to test a specific hypothesis and then follow it up with a non-experimental study using a different method, such as a survey or case study, to provide additional support for the results.

Using triangulation allows researchers to confirm or enrich the findings from one method with the findings from another method. It also allows researchers to explore different aspects of a research question and address a single method’s potential limitations.

Meta-Analysis

Meta-analysis is a statistical method that combines the results from multiple studies to provide a more precise estimate of the effect size. This is particularly useful when the analysed studies have different designs, such as experimental and non-experimental studies.

Meta-analysis allows researchers to combine the results from multiple studies and to identify patterns and trends that may not be apparent in individual studies. It also allows researchers to account for differences in study design, sample size, and other factors that may affect the results.

However, it’s important to note that meta-analysis is only appropriate when the studies being analyzed are sufficiently similar and when the data can be combined in a meaningful way.

Conclusion: The Role of Non-Experimental Studies in Research

Non-experimental studies are an essential and valuable tool in research. They allow researchers to explore complex phenomena and relationships in natural settings, examine individual cases in depth, and study a variety of contexts and perspectives.

While non-experimental studies may not have the same level of control as experimental studies, they can provide valuable insights and can be used in combination with experimental studies to increase the validity and generalizability of research findings.

In conclusion, non-experimental studies have a valuable role in research and should be considered a viable option for addressing research questions.

Gabriel Arteaga

Understanding Control Groups in Research Studies

Academic Journals

What Are Academic Journals? | A Comprehensive Guide

Related posts.

What is Meta-Ethnography

Using Meta-Ethnography in Qualitative Research: Techniques and Examples

What is Q Methodology Research

How to Conduct Q Methodology in Qualitative Research: Techniques and Examples

What is Exploratory Factor Analysis

What is Exploratory Factor Analysis? | A Beginners Guide

What is the Constant Comparative Method

The Constant Comparative Method | Explanation and Examples

Type above and press Enter to search. Press Esc to cancel.

non experimental method definition

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of Non-Experimental Research

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., how accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach is appropriate. But the two approaches can also be used to address the same research question in complementary ways. For example, in Milgram’s original (non-experimental) obedience study, he was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. However,  Milgram subsequently conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into two broad categories: correlational research and observational research. 

The most common type of non-experimental research conducted in psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable. More specifically, in correlational research , the researcher measures two variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related.

Observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories).

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When psychologists wish to study change over time (for example, when developmental psychologists wish to study aging) they usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect ) rather than a direct effect of age. For this reason, longitudinal studies , in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging. However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the researcher and the participants. A third approach, known as cross-sequential studies , combines elements of both cross-sectional and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in different age groups. For example, they might measure changes over a ten year period among participants who at the start of the study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first assessment. Further, by following the different age groups over time they can subsequently determine whether the original differences they found across the age groups are due to true age effects or cohort effects.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in psychiatric wards was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) falls in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 6.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in  Figure 6.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational (non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

A research that lacks the manipulation of an independent variable.

Research that is non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.

Research that is non-experimental because it focuses on recording systemic observations of behavior in a natural or laboratory setting without manipulating anything.

Studies that involve comparing two or more pre-existing groups of people (e.g., children at different stages of development).

Differences between the groups may reflect the generation that people come from rather than a direct effect of age.

Studies in which one group of people are followed over time as they age.

Studies in which researchers follow people in different age groups in a smaller period of time.

Overview of Non-Experimental Research Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

IMAGES

  1. Explain Different Types of Non Experimental Research Design

    non experimental method definition

  2. PPT

    non experimental method definition

  3. PPT

    non experimental method definition

  4. 6. Non Experimental Methods

    non experimental method definition

  5. 7.1 Overview of Non-Experimental Research

    non experimental method definition

  6. 1.4 N ON

    non experimental method definition

COMMENTS

  1. Non-experimental research: What it is, Types & Tips

    This method studies the phenomena exactly as they occurred. Types of non-experimental research. Non-experimental research can take the following forms: Cross-sectional research: Cross-sectional research is used to observe and analyze the exact time of the research to cover various study groups or samples. This type of research is divided into:

  2. 6.1 Overview of Non-Experimental Research

    Figure 6.2 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for ...

  3. What is non-experimental research: Definition, types & examples

    Non-experimental research does not involve the manipulation of variables.; The aim of this research type is to explore the factors as they naturally occur.; This method is used when experimentation is not possible because of ethical or practical reasons.; Instead of creating a sample or participant group, the existing groups or natural thresholds are used during the research.

  4. Overview of Non-Experimental Research

    Observational research is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram's original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants ...

  5. Overview of Nonexperimental Research

    Define nonexperimental research, distinguish it clearly from experimental research, and give several examples. ... Imagine, for example, a group of research methods students interested in the relationship between children's being the victim of bullying and the children's self-esteem. The first thing that is likely to occur to these ...

  6. 7.1 Overview of Nonexperimental Research

    When to Use Nonexperimental Research. As we saw in Chapter 6 "Experimental Research", experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of ...

  7. PDF Overview of Non-experimental Methods

    Why use non-experimental research methods? Overview of Non-experimental Methods 1. Experimentation is not feasible or desirable. "Non-experimental methods" refers to a group of descriptive/ observational research techniques that, while unable to clearly establish cause-and-effect, can nevertheless reveal important aspects of thought, behavior ...

  8. Non-Experimental Studies in Research

    Definition of Non-Experimental Studies. As mentioned before, non-experimental studies, also known as observational studies, are research methods that are used to observe and describe a phenomenon without manipulating a single variable.In other words, non-experimental studies don't involve the controlled manipulation of an independent variable in order to see what effect it has on a dependent ...

  9. Overview of Non-Experimental Research

    Observational research is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram's original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants ...

  10. Overview of Non-Experimental Research

    Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for ...