A Review of Android Malware Detection Approaches Based on Machine Learning
Ieee account.
- Change Username/Password
- Update Address
Purchase Details
- Payment Options
- Order History
- View Purchased Documents
Profile Information
- Communications Preferences
- Profession and Education
- Technical Interests
- US & Canada: +1 800 678 4333
- Worldwide: +1 732 981 0060
- Contact & Support
- About IEEE Xplore
- Accessibility
- Terms of Use
- Nondiscrimination Policy
- Privacy & Opting Out of Cookies
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.
A comprehensive review on permissions-based Android malware detection
- Regular Contribution
- Published: 04 March 2024
- Volume 23 , pages 1877–1912, ( 2024 )
Cite this article
- Yash Sharma ORCID: orcid.org/0000-0002-3255-7159 1 &
- Anshul Arora ORCID: orcid.org/0000-0001-6316-9055 1
640 Accesses
Explore all metrics
The first Android-ready “G1” phone debuted in late October 2008. Since then, the growth of Android malware has been explosive, analogous to the rise in the popularity of Android. The major positive aspect of Android is its open-source nature, which empowers app developers to expand their work. However, authors with malicious intentions pose grave threats to users. In the presence of such threats, Android malware detection is the need of an hour. Consequently, researchers have proposed various techniques involving static, dynamic, and hybrid analysis to address such threats to numerous features in the last decade. However, the feature that most researchers have extensively used to perform malware analysis and detection in Android security is Android permission. Hence, to provide a clarified overview of the latest and past work done in Android malware analysis and detection, we perform a comprehensive literature review using permissions as a central feature or in combination with other components by collecting and analyzing 205 studies from 2009 to 2023. We extracted information such as the choice opted by researchers between analysis or detection, techniques used to select or rank the permissions feature set, features used along with permissions, detection models employed, malware datasets used by researchers, and limitations and challenges in the field of Android malware detection to propose some future research directions. In addition, on the basis of the information extracted, we answer the six research questions designed considering the above factors.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save.
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Price excludes VAT (USA) Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Rent this article via DeepDyve
Institutional subscriptions
Similar content being viewed by others
The Evolution of Permission as Feature for Android Malware Detection
PMDS: Permission-Based Malware Detection System
Research on data mining of permissions mode for android malware detection, data availability.
The authors declare that the data supporting the findings of this study are available within the paper.
https://www.tenda.com.cn .
https://portal.av-atlas.org/malware .
https://www.forbes.com/sites/thomasbrewster/2017/massive-google-android-malware-expensivewall/?sh=7a91664c477f .
https://developer.android.com/guide/platform .
https://apktool.en.lo4d.com/windows .
https://developer.Android.com/studio/command-line/aapt2 .
http://www.sec.cs.tu-bs.de/ danarp/Drebin/ .
http://www.malgenomeproject.org/ .
https://www.virustotal.com .
https://virusshare.com/ .
http://contagiominidump.blogspot.hk/ .
https://home.mcafee.com/Default.aspx?rfhs=1 .
https://androzoo.uni.lu/ .
https://www.kaggle.com .
http://www.anzhi.com/ .
https://www.unb.ca/cic/datasets/index.html .
https://developer.android.com/studio/command-line/aapt2 .
Lubuva, H., Huang, Q., Msonde, G.C.: A review of static malware detection for android apps permission based on deep learning. Int. J. Comput. Netw. Appl. 6 (5), 80–91 (2019)
Google Scholar
Alqahtani, E.J., Zagrouba, R., Almuhaideb, A.: A survey on android malware detection techniques using machine learning algorithms. In: 2019 6th International Conference on Software Defined Systems (SDS), pp. 110–117 (2019). IEEE
Naway, A., Li, Y.: A review on the use of deep learning in android malware detection. arXiv preprint arXiv:1812.10360 (2018)
Hahn, S., Protsenko, M., Müller, T.: Comparative evaluation of machine learning-based malware detection on android. Sicherheit 2016-Sicherheit, Schutz und Zuverlässigkeit (2016)
Kouliaridis, V., Barmpatsalou, K., Kambourakis, G., Chen, S.: A survey on mobile malware detection techniques. IEICE Trans. Inf. Syst. 103 (2), 204–211 (2020)
Article Google Scholar
Qamar, A., Karim, A., Chang, V.: Mobile malware attacks: review, taxonomy & future directions. Futur. Gener. Comput. Syst. 97 , 887–909 (2019)
Hamed, Y.S.I., AbdulKader, S.N.A., Mostafa, M.-S.M.: Mobile malware detection: a survey. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 17 (1) (2019)
Yan, P., Yan, Z.: A survey on dynamic mobile malware detection. Softw. Qual. J. 26 (3), 891–919 (2018)
Odusami, M., Abayomi-Alli, O., Misra, S., Shobayo, O., Damasevicius, R., Maskeliunas, R.: Android malware detection: a survey. In: Applied Informatics: 1st International Conference, ICAI 2018, Bogotá, Colombia, 1–3 Nov 2018, Proceedings 1, pp. 255–266. Springer (2018)
BalaGanesh, D., Chakrabarti, A., Midhunchakkaravarthy, D.: Smart devices threats, vulnerabilities and malware detection approaches: a survey. Eur. J. Eng. Technol. Res. 3 (2), 7–12 (2018)
Gyamfi, N.K., Owusu, E.: Survey of mobile malware analysis, detection techniques and tool. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1101–1107. IEEE (2018)
Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of android malware detection approaches based on machine learning. IEEE Access 8 , 124579–124607 (2020)
Pan, Y., Ge, X., Fang, C., Fan, Y.: A systematic literature review of android malware detection using static analysis. IEEE Access 8 , 116363–116379 (2020)
Enck, W., Ongtang, M., McDaniel, P.: Understanding android security. IEEE Secur. Privacy 7 (1), 50–57 (2009)
Zhu, H.-J., Gu, W., Wang, L.-M., Xu, Z.-C., Sheng, V.S.: Android malware detection based on multi-head squeeze-and-excitation residual network. Expert Syst. Appl. 212 , 118705 (2023)
Ju, S.-H., Seo, H.-S., Kwak, J.: Research on android malware permission pattern using permission monitoring system. Multimedia Tools Appl. 75 , 14807–14817 (2016)
Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 235–245 (2009)
Alecakir, H., Can, B., Sen, S.: Attention: there is an inconsistency between android permissions and application metadata! Int. J. Inf. Secur. 1–19 (2021)
Zhang, Y., Yang, M., Yang, Z., Gu, G., Ning, P., Zang, B.: Permission use analysis for vetting undesirable behaviors in android apps. IEEE Trans. Inf. Forensics Secur. 9 (11), 1828–1842 (2014)
Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant permission identification for machine-learning-based android malware detection. IEEE Trans. Industr. Inf. 14 (7), 3216–3225 (2018)
Şahin, D.Ö., Kural, O.E., Akleylek, S., Kılıç, E.: A novel permission-based android malware detection system using feature selection based on linear regression. Neural Comput. Appl. 1–16 (2021)
Talha, K.A., Alper, D.I., Aydin, C.: Apk auditor: permission-based android malware detection system. Digit. Investig. 13 , 1–14 (2015)
Varma, P.R.K., Raj, K.P., Raju, K.S.: Android mobile security by detecting and classification of malware based on permissions using machine learning algorithms. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 294–299. IEEE (2017)
Mahindru, A., Singh, P.: Dynamic permissions based android malware detection using machine learning techniques. In: Proceedings of the 10th Innovations in Software Engineering Conference, pp. 202–210 (2017)
Doğru, İA., Önder, M.: Appperm analyzer: malware detection system based on android permissions and permission groups. Int. J. Softw. Eng. Knowl. Eng. 30 (03), 427–450 (2020)
Rathore, H., Sahay, S.K., Rajvanshi, R., Sewak, M.: Identification of significant permissions for efficient android malware detection. In: International Conference on Broadband Communications, Networks and Systems, pp. 33–52. Springer (2020)
Shang, F., Li, Y., Deng, X., He, D.: Android malware detection method based on Naive Bayes and permission correlation algorithm. Clust. Comput. 21 (1), 955–966 (2018)
Tchakounté, F., Wandala, A.D., Tiguiane, Y.: Detection of android malware based on sequence alignment of permissions. Int. J. Comput. (IJC) 35 (1), 26–36 (2019)
Ilham, S., Abderrahim, G., Abdelhakim, B.A.: Permission based malware detection in android devices. In: Proceedings of the 3rd International Conference on Smart City Applications, pp. 1–6 (2018)
Şahın, D.Ö., Kural, O.E., Akleylek, S., Kiliç, E.: New results on permission based static analysis for android malware. In: 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–4. IEEE (2018)
D’Angelo, G., Palmieri, F., Robustelli, A.: A federated approach to android malware classification through perm-maps. Clust. Comput. 25 (4), 2487–2500 (2022)
Xiong, P., Wang, X., Niu, W., Zhu, T., Li, G.: Android malware detection with contrasting permission patterns. China Commun. 11 (8), 1–14 (2014)
Lu, T., Hou, S.: A two-layered malware detection model based on permission for android. In: 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), pp. 239–243. IEEE (2018)
Kavitha, K., Salini, P., Ilamathy, V.: Exploring the malicious android applications and reducing risk using static analysis. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 1316–1319. IEEE (2016)
Amer, E.: Permission-based approach for android malware analysis through ensemble-based voting model. In: 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp. 135–139. IEEE (2021)
Chakravarty, S., et al.: Feature selection and evaluation of permission-based android malware detection. In: 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), pp. 795–799. IEEE (2020)
Sirisha, P., Anuradha, T., et al.: Detection of permission driven malware in android using deep learning techniques. In: 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 941–945. IEEE (2019)
Sahal, A.A., Alam, S., Soğukpinar, I.: Mining and detection of android malware based on permissions. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 264–268. IEEE (2018)
Mat, S.R.T., Ab Razak, M.F., Kahar, M.N.M., Arif, J.M., Zabidi, A.: Applying bayesian probability for android malware detection using permission features. In: 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), pp. 574–579. IEEE (2021)
Wang, Z., Li, K., Hu, Y., Fukuda, A., Kong, W.: Multilevel permission extraction in android applications for malware detection. In: 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5. IEEE (2019)
Park, J., Kang, M., Cho, S.-j., Han, H., Suh, K.: Analysis of permission selection techniques in machine learning-based malicious app detection. In: 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 92–99. IEEE (2020)
Liang, S., Du, X.: Permission-combination-based scheme for android mobile malware detection. In: 2014 IEEE International Conference on Communications (ICC), pp. 2301–2306. IEEE (2014)
Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative security risk assessment of android permissions and applications. In: Data and Applications Security and Privacy XXVII: 27th Annual IFIP WG 11.3 Conference, DBSec 2013, Newark, NJ, USA, 15–17 July 2013. Proceedings 27, pp. 226–241. Springer (2013)
Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Using probabilistic generative models for ranking risks of android apps. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 241–252 (2012)
Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: \(\{\) WHYPER \(\}\) : towards automating risk assessment of mobile applications. In: 22nd USENIX Security Symposium (USENIX Security 13), pp. 527–542 (2013)
Samra, A.A.A., Yim, K., Ghanem, O.A.: Analysis of clustering technique in android malware detection. In: 2013 7th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 729–733. IEEE (2013)
Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I.: A new android malware detection approach using Bayesian classification. In: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 121–128. IEEE (2013)
Zarni Aung, W.Z.: Permission-based android malware detection. Int. J. Sci. Technol. Res. 2 (3), 228–234 (2013)
Yerima, S.Y., Sezer, S., McWilliams, G.: Analysis of Bayesian classification-based approaches for android malware detection. IET Inf. Secur. 8 (1), 25–36 (2014)
Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Álvarez, G.: Puma: permission usage to detect malware in android. In: International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pp. 289–298. Springer (2013)
Moonsamy, V., Rong, J., Liu, S.: Mining permission patterns for contrasting clean and malicious android applications. Futur. Gener. Comput. Syst. 36 , 122–132 (2014)
Backes, M., Gerling, S., Hammer, C., Maffei, M., Styp-Rekowsky, P.: Appguard–enforcing user requirements on android apps. In: Tools and Algorithms for the Construction and Analysis of Systems: 19th International Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, 16–24 Mar 2013. Proceedings 19, pp. 543–548. Springer (2013)
Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P.: Droidmat: android malware detection through manifest and API calls tracing. In: 2012 7th Asia Joint Conference on Information Security, pp. 62–69. IEEE (2012)
Kato, H., Sasaki, T., Sasase, I.: Android malware detection based on composition ratio of permission pairs. IEEE Access 9 , 130006–130019 (2021)
Arora, A., Peddoju, S.K., Conti, M.: Permpair: android malware detection using permission pairs. IEEE Trans. Inf. Forensics Secur. 15 , 1968–1982 (2019)
Alsoghyer, S., Almomani, I.: On the effectiveness of application permissions for android ransomware detection. In: 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), pp. 94–99. IEEE (2020)
Saleem, M.S., Mišić, J., Mišić, V.B.: Examining permission patterns in android apps using kernel density estimation. In: 2020 International Conference on Computing, Networking and Communications (ICNC), pp. 719–724. IEEE (2020)
Ghasempour, A., Sani, N.F.M., Ovye, J.A.: Permission extraction framework for android malware detection. Int. J. Adv. Comput. Sci. Appl. 11 (11) (2020)
Shrivastava, G., Kumar, P.: Sensdroid: analysis for malicious activity risk of android application. Multimedia Tools Appl. 78 (24), 35713–35731 (2019)
Upadhayay, M., Sharma, A., Garg, G., Arora, A.: Rpndroid: android malware detection using ranked permissions and network traffic. In: 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), pp. 19–24. IEEE (2021)
Lee, S.-A., Yoon, A.-R., Lee, J.-W., Lee, K.: An android malware detection system using a knowledge-based permission counting method. JOIV 6 (1), 138–144 (2022)
Surendran, R., Thomas, T., Emmanuel, S.: A tan based hybrid model for android malware detection. J. Inf. Secur. Appl. 54 , 102483 (2020)
Kabakus, A.T.: Droidmalwaredetector: a novel android malware detection framework based on convolutional neural network. Expert Syst. Appl. 206 , 117833 (2022)
Wang, X., Zhang, L., Zhao, K., Ding, X., Yu, M.: Mfdroid: a stacking ensemble learning framework for android malware detection. Sensors 22 (7), 2597 (2022)
Akbar, F., Hussain, M., Mumtaz, R., Riaz, Q., Wahab, A.W.A., Jung, K.-H.: Permissions-based detection of android malware using machine learning. Symmetry 14 (4), 718 (2022)
Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., Cheng, L.: Droiddet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272 , 638–646 (2018)
Wang, W., Ren, C., Song, H., Zhang, S., Liu, P., et al.: Fgl_droid: an efficient android malware detection method based on hybrid analysis. Secur. Commun. Netw. 2022 (2022)
McLaughlin, N.: Malceiver: perceiver with hierarchical and multi-modal features for android malware detection. arXiv preprint arXiv:2204.05994 (2022)
Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-induced risk in android applications for malicious application detection. IEEE Trans. Inf. Forensics Secur. 9 (11), 1869–1882 (2014)
Grace, M., Sughasiny, M.: Behaviour analysis of inter-app communication using a lightweight monitoring app for malware detection. Expert Syst. Appl. 210 , 118404 (2022)
Liu, K., Zhang, G., Chen, X., Liu, Q., Peng, L., Yurui, L.: Android malware detection based on sensitive patterns. Telecommun. Syst. 82 (4), 435–449 (2023)
Bayazit, E.C., Sahingoz, O.K., Dogan, B.: A deep learning based android malware detection system with static analysis. In: 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–6. IEEE (2022)
Lee, J., Jang, H., Ha, S., Yoon, Y.: Android malware detection using machine learning with feature selection based on the genetic algorithm. Mathematics 9 (21), 2813 (2021)
Zhu, H.-J., Wang, L.-M., Zhong, S., Li, Y., Sheng, V.S.: A hybrid deep network framework for android malware detection. IEEE Trans. Knowl. Data Eng. 34 (12), 5558–5570 (2021)
Almahmoud, M., Alzu’bi, D., Yaseen, Q.: Redroiddet: android malware detection based on recurrent neural network. Procedia Comput. Sci. 184 , 841–846 (2021)
Feng, J., Shen, L., Chen, Z., Wang, Y., Li, H.: A two-layer deep learning method for android malware detection using network traffic. IEEE Access 8 , 125786–125796 (2020)
Kandukuru, S., Sharma, R.: Android malicious application detection using permission vector and network traffic analysis. In: 2017 2nd International Conference for Convergence in Technology (I2CT), pp. 1126–1132. IEEE (2017)
Arora, A., Peddoju, S.K.: Ntpdroid: a hybrid android malware detector using network traffic and system permissions. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 808–813. IEEE (2018)
Ding, C., Luktarhan, N., Lu, B., Zhang, W.: A hybrid analysis-based approach to android malware family classification. Entropy 23 (8), 1009 (2021)
Şahın, D.Ö., Akleylek, S., Kiliç, E.: Linregdroid: detection of android malware using multiple linear regression models-based classifiers. IEEE Access 10 , 14246–14259 (2022)
Idrees, F., Rajarajan, M., Chen, T.M., Rahulamathavan, Y., Naureen, A.: Andropin: correlating android permissions and intents for malware detection. In: 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 394–399. IEEE (2017)
Khariwal, K., Singh, J., Arora, A.: Ipdroid: android malware detection using intents and permissions. In: 2020 4th World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 197–202. IEEE (2020)
Idrees, F., Rajarajan, M.: Investigating the android intents and permissions for malware detection. In: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 354–358. IEEE (2014)
Bai, H., Xie, N., Di, X., Ye, Q.: Famd: a fast multifeature android malware detection framework, design, and implementation. IEEE Access 8 , 194729–194740 (2020)
Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti, M.: Similarity-based android malware detection using hamming distance of static binary features. Futur. Gener. Comput. Syst. 105 , 230–247 (2020)
Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., Awajan, A.: Intelligent mobile malware detection using permission requests and API calls. Futur. Gener. Comput. Syst. 107 , 509–521 (2020)
Mathur, A., Podila, L.M., Kulkarni, K., Niyaz, Q., Javaid, A.Y.: Naticusdroid: a malware detection framework for android using native and custom permissions. J. Inf. Secur. Appl. 58 , 102696 (2021)
Imtiaz, S.I., Rehman, S., Javed, A.R., Jalil, Z., Liu, X., Alnumay, W.S.: Deepamd: detection and identification of android malware using high-efficient deep artificial neural network. Futur. Gener. Comput. Syst. 115 , 844–856 (2021)
Liu, Z., Wang, R., Japkowicz, N., Tang, D., Zhang, W., Zhao, J.: Research on unsupervised feature learning for android malware detection based on restricted Boltzmann machines. Futur. Gener. Comput. Syst. 120 , 91–108 (2021)
Chen, X., Shi, S., Xie, C., Yang, Z., Guo, Y., Fang, Y., Wen, W.: Suip: an android malware detection method based on data flow features. J. Phys. Conf. Ser. 1812 , 012010 (2021)
Guan, J., Jiang, X., Mao, B.: A method for class-imbalance learning in android malware detection. Electronics 10 (24), 3124 (2021)
Mohamed, S.E., Ashaf, M., Ehab, A., Shereef, O., Metwaie, H., Amer, E.: Detecting malicious android applications based on API calls and permissions using machine learning algorithms. In: 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp. 1–6. IEEE (2021)
Pushpa Latha, D.: Bat optimization algorithm for wrapper-based feature selection and performance improvement of android malware detection (2021)
Gyunka, B.A., Abikoye, O.C., Adekunle, A.S.: Anomaly android malware detection: a comparative analysis of six classifiers. In: International Conference on Information and Communication Technology and Applications, pp. 145–157. Springer (2020)
Taha, A.A., Malebary, S.J.: Hybrid classification of android malware based on fuzzy clustering and the gradient boosting machine. Neural Comput. Appl. 33 , 6721–6732 (2021)
Peng, T., Hu, B., Liu, J., Huang, J., Zhang, Z., He, R., Hu, X.: A lightweight multi-source fast android malware detection model. Appl. Sci. 12 (11), 5394 (2022)
Ashwini, S., Pai, M., Sangeetha, J.: Android malware classification based on static features of an application. In: Advances in Computing and Network Communications: Proceedings of CoCoNet 2020, vol. 2, pp. 567–581. Springer (2021)
Jiang, X., Mao, B., Guan, J., Huang, X.: Android malware detection using fine-grained features. Sci. Program. 2020 , 1–13 (2020)
Wang, J., Jing, Q., Gao, J., Qiu, X.: Sedroid: a robust android malware detector using selective ensemble learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–5. IEEE (2020)
Rana, M.S., Sung, A.H.: Evaluation of advanced ensemble learning techniques for android malware detection. Vietnam J. Comput. Sci. 7 (02), 145–159 (2020)
Lu, T., Du, Y., Ouyang, L., Chen, Q., Wang, X.: Android malware detection based on a hybrid deep learning model. Secur. Commun. Netw. 2020 , 1–11 (2020)
Millar, S., McLaughlin, N., Rincon, J.M., Miller, P.: Multi-view deep learning for zero-day android malware detection. J. Inf. Secur. Appl. 58 , 102718 (2021)
Barrera, D., Kayacik, H.G., Van Oorschot, P.C., Somayaji, A.: A methodology for empirical analysis of permission-based security models and its application to android. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 73–84 (2010)
Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying android applications using machine learning. In: 2010 International Conference on Computational Intelligence and Security, pp. 329–333. IEEE (2010)
Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 627–638 (2011)
Erickson, J.L., Gibler, C.D., Chen, H.: Androidleaks: detecting privacy leaks in android applications. Technical report, Sandia National Lab.(SNL-CA), Livermore, CA (United States) (2011)
Sarma, B.P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Android permissions: a perspective combining risks and benefits. In: Proceedings of the 17th ACM Symposium on Access Control Models and Technologies, pp. 13–22 (2012)
Frank, M., Dong, B., Felt, A.P., Song, D.: Mining permission request patterns from android and facebook applications. In: 2012 IEEE 12th International Conference on Data Mining, pp. 870–875. IEEE (2012)
Zhu, J., Guan, Z., Yang, Y., Yu, L., Sun, H., Chen, Z.: Permission-based abnormal application detection for android. In: Information and Communications Security: 14th International Conference, ICICS 2012, Hong Kong, China, 29–31 Oct 2012. Proceedings 14, pp. 228–239. Springer (2012)
Peiravian, N., Zhu, X.: Machine learning for android malware detection using permission and API calls. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 300–305. IEEE (2013)
Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J., Bringas, P.G., Álvarez Marañón, G.: Mama: manifest analysis for malware detection in android. Cybern. Syst. 44 (6–7), 469–488 (2013)
Feldman, S., Stadther, D., Wang, B.: Manilyzer: automated android malware detection through manifest analysis. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 767–772. IEEE (2014)
Pehlivan, U., Baltaci, N., Acartürk, C., Baykal, N.: The analysis of feature selection methods and classification algorithms in permission based android malware detection. In: 2014 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), pp. 1–8. IEEE (2014)
Rahman, R., Islam, M.R., Ahmed, A., Hasan, M.K., Mahmud, H.: A study of permission-based malware detection using machine learning. In: 2022 15th International Conference on Security of Information and Networks (SIN), pp. 01–06. IEEE (2022)
Rovelli, P., Vigfússon, Y.: Pmds: permission-based malware detection system. In: Information Systems Security: 10th International Conference, ICISS 2014, Hyderabad, India, 16–20 Dec 2014, Proceedings 10, pp. 338–357. Springer (2014)
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: effective and explainable detection of android malware in your pocket. In: Ndss, vol. 14, pp. 23–26 (2014)
Yerima, S.Y., Sezer, S., Muttik, I.: High accuracy android malware detection using ensemble learning. IET Inf. Secur. 9 (6), 313–320 (2015)
Kang, H., Jang, J.-W., Mohaisen, A., Kim, H.K.: Detecting and classifying android malware using static analysis along with creator information. Int. J. Distrib. Sens. Netw. 11 (6), 479174 (2015)
Zhao, K., Zhang, D., Su, X., Li, W.: Fest: a feature extraction and selection tool for android malware detection. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 714–720. IEEE (2015)
Qiao, M., Sung, A.H., Liu, Q.: Merging permission and API features for android malware detection. In: 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 566–571. IEEE (2016)
Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H.: Stormdroid: a streaminglized machine learning-based system for detecting android malware. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 377–388 (2016)
Demertzis, K., Iliadis, L.: Bio-inspired hybrid intelligent method for detecting android malware. In: Knowledge, Information and Creativity Support Systems: Selected Papers from KICSS’2014-9th International Conference, Held in Limassol, Cyprus, on 6–8 Nov 2014, pp. 289–304. Springer (2016)
Verma, S., Muttoo, S.K., Pal, S.: Mdroid: android based malware detection using mcm classifier. Int. J. Eng. Appl. Sci. Technol. 1 (8), 206–215 (2016)
Wang, K., Song, T., Liang, A.: Mmda: metadata based malware detection on android. In: 2016 12th International Conference on Computational Intelligence and Security (CIS), pp. 598–602. IEEE (2016)
Suarez-Tangil, G., Dash, S.K., Ahmadi, M., Kinder, J., Giacinto, G., Cavallaro, L.: Droidsieve: fast and accurate classification of obfuscated android malware. In: Proceedings of the 7th ACM on Conference on Data and Application Security and Privacy, pp. 309–320 (2017)
Wang, X., Zhang, D., Su, X., Li, W., et al.: Mlifdect: android malware detection based on parallel machine learning and information fusion. Secur. Commun. Netw. 2017 (2017)
Li, D., Wang, Z., Li, L., Wang, Z., Wang, Y., Xue, Y.: Fgdetector: fine-grained android malware detection. In: 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC), pp. 311–318. IEEE (2017)
Bhattacharya, A., Goswami, R.T.: Dmdam: data mining based detection of android malware. In: Proceedings of the First International Conference on Intelligent Computing and Communication, pp. 187–194. Springer (2017)
Xie, N., Zeng, F., Qin, X., Zhang, Y., Zhou, M., Lv, C.: Repassdroid: automatic detection of android malware based on essential permissions and semantic features of sensitive Apis. In: 2018 International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 52–59. IEEE (2018)
Xie, N., Di, X., Wang, X., Zhao, J.: Andro_md: android malware detection based on convolutional neural networks. Int. J. Perform. Eng. 14 (3), 547 (2018)
Ren, B., Liu, C., Cheng, B., Guo, J., Chen, J.: Mobisentry: towards easy and effective detection of android malware on smartphones. Mob. Inf. Syst. 2018 , 1–14 (2018)
Tao, G., Zheng, Z., Guo, Z., Lyu, M.R.: Malpat: mining patterns of malicious and benign android apps via permission-related Apis. IEEE Trans. Reliab. 67 (1), 355–369 (2017)
Namrud, Z., Kpodjedo, S., Bali, A., Talhi, C.: Deep-layer clustering to identify permission usage patterns of android app categories. IEEE Access 10 , 24240–24254 (2022)
Alswaina, F., Elleithy, K.: Android malware permission-based multi-class classification using extremely randomized trees. IEEE Access 6 , 76217–76227 (2018)
Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., Wang, Y., Xiang, Y.: A3cm: automatic capability annotation for android malware. IEEE Access 7 , 147156–147168 (2019)
Zhu, H., Li, Y., Li, R., Li, J., You, Z., Song, H.: Sedmdroid: an enhanced stacking ensemble framework for android malware detection. IEEE Trans. Netw. Sci. Eng. 8 (2), 984–994 (2020)
Feng, Y., Chen, L., Zheng, A., Gao, C., Zheng, Z.: Ac-net: assessing the consistency of description and permission in android apps. IEEE Access 7 , 57829–57842 (2019)
Aonzo, S., Merlo, A., Migliardi, M., Oneto, L., Palmieri, F.: Low-resource footprint, data-driven malware detection on android. IEEE Trans. Sustain. Comput. 5 (2), 213–222 (2017)
Urooj, B., Shah, M.A., Maple, C., Abbasi, M.K., Riasat, S.: Malware detection: a framework for reverse engineered android applications through machine learning algorithms. IEEE Access 10 , 89031–89050 (2022)
Wang, R., Wang, Z., Tang, B., Zhao, L., Wang, L.: Smartpi: understanding permission implications of android apps from user reviews. IEEE Trans. Mob. Comput. 19 (12), 2933–2945 (2019)
Wang, W., Gao, Z., Zhao, M., Li, Y., Liu, J., Zhang, X.: Droidensemble: detecting android malicious applications with ensemble of string and structural static features. IEEE Access 6 , 31798–31807 (2018)
Zhang, J., Tian, C., Duan, Z., Zhao, L.: Rtpdroid: detecting implicitly malicious behaviors under runtime permission model. IEEE Trans. Reliab. 70 (3), 1295–1308 (2021)
Kesswani, N., Lyu, H., Zhang, Z.: Analyzing android app privacy with GP-PP model. IEEE Access 6 , 39541–39546 (2018)
İbrahim, M., Issa, B., Jasser, M.B.: A method for automatic android malware detection based on static analysis and deep learning. IEEE Access 10 , 117334–117352 (2022)
Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: Samadroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access 6 , 4321–4339 (2018)
Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21 (1), 114–123 (2016)
Zhou, H., Yang, X., Pan, H., Guo, W.: An android malware detection approach based on Simgru. IEEE Access 8 , 148404–148410 (2020)
Cilleruelo, C., De-Marcos, L., Martinez-Herráiz, J.-J., et al.: Malware detection inside app stores based on lifespan measurements. IEEE Access 9 , 119967–119976 (2021)
Firdaus, A., Anuar, N.B., Karim, A., Razak, M.F.A.: Discovering optimal features using static analysis and a genetic search based method for android malware detection. Front. Inf. Technol. Electron. Eng. 19 (6), 712–736 (2018)
Wang, C., Xu, Q., Lin, X., Liu, S.: Research on data mining of permissions mode for android malware detection. Clust. Comput. 22 , 13337–13350 (2019)
Singh, A.K., Jaidhar, C., Kumara, M.A.: Experimental analysis of android malware detection based on combinations of permissions and api-calls. J. Comput. Virol. Hacking Tech. 15 , 209–218 (2019)
Rafiq, H., Aslam, N., Aleem, M., Issac, B., Randhawa, R.H.: Andromalpack: enhancing the ml-based malware classification by detection and removal of repacked apps for android systems. Sci. Rep. 12 (1), 19534 (2022)
Mahdavifar, S., Alhadidi, D., Ghorbani, A.A.: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder. J. Netw. Syst. Manag. 30 , 1–34 (2022)
Seraj, S., Khodambashi, S., Pavlidis, M., Polatidis, N.: Hamdroid: permission-based harmful android anti-malware detection using neural networks. Neural Comput. Appl. 34 (18), 15165–15174 (2022)
Mahindru, A., Sangal, A.: Somdroid: android malware detection by artificial neural network trained using unsupervised learning. Evol. Intel. 15 (1), 407–437 (2022)
Anupama, M., Vinod, P., Visaggio, C.A., Arya, M., Philomina, J., Raphael, R., Pinhero, A., Ajith, K., Mathiyalagan, P.: Detection and robustness evaluation of android malware classifiers. J. Comput. Virol. Hacking Tech. 18 (3), 147–170 (2022)
Chen, X., Yu, H., Yu, D., Chen, J., Sun, X.: Predicting android malware combining permissions and API call sequences. Softw. Qual. J. 31 (3), 655–685 (2023)
Article MathSciNet Google Scholar
Mahindru, A., Sangal, A.: Fsdroid:-a feature selection technique to detect malware from android using machine learning techniques: Fsdroid. Multimedia Tools Appl. 80 , 13271–13323 (2021)
Tchakounté, F., Ngassi, R.C.N., Kamla, V.C., Udagepola, K.P.: Limondroid: a system coupling three signature-based schemes for profiling android malware. Iran J. Comput. Sci. 4 , 95–114 (2021)
Nissim, N., Moskovitch, R., BarAd, O., Rokach, L., Elovici, Y.: Aldroid: efficient update of android anti-virus software using designated active learning methods. Knowl. Inf. Syst. 49 , 795–833 (2016)
Peynirci, G., Eminağaoğlu, M., Karabulut, K.: Feature selection for malware detection on the android platform based on differences of IDF values. J. Comput. Sci. Technol. 35 , 946–962 (2020)
Nauman, M., Tanveer, T.A., Khan, S., Syed, T.A.: Deep neural architectures for large scale android malware analysis. Clust. Comput. 21 , 569–588 (2018)
Bhattacharya, A., Goswami, R.T., Mukherjee, K.: A feature selection technique based on rough set and improvised PSO algorithm (PSORS-FS) for permission based detection of android malwares. Int. J. Mach. Learn. Cybern. 10 , 1893–1907 (2019)
Bao, L., Lo, D., Xia, X., Li, S.: Automated android application permission recommendation. Sci. China Inf. Sci. 60 , 1–17 (2017)
Rubio-Medrano, C.E., Soundrapandian, P.K.D., Hill, M., Claramunt, L., Baek, J., Ahn, G.-J.: Dypoldroid: protecting against permission-abuse attacks in android. Inf. Syst. Front. 25 (2), 529–548 (2023)
Shatnawi, A.S., Yassen, Q., Yateem, A.: An android malware detection approach based on static feature analysis using machine learning algorithms. Procedia Comput. Sci. 201 , 653–658 (2022)
Smmarwar, S.K., Gupta, G.P., Kumar, S., Kumar, P.: An optimized and efficient android malware detection framework for future sustainable computing. Sustain. Energy Technol. Assess. 54 , 102852 (2022)
Arif, J.M., Ab Razak, M.F., Mat, S.R.T., Awang, S., Ismail, N.S.N., Firdaus, A.: Android mobile malware detection using fuzzy AHP. J. Inf. Secur. Appl. 61 , 102929 (2021)
Guerra-Manzanares, A., Bahsi, H., Nõmm, S.: Kronodroid: time-based hybrid-featured dataset for effective android malware detection and characterization. Comput. Secur. 110 , 102399 (2021)
Bhat, P., Dutta, K.: A multi-tiered feature selection model for android malware detection based on feature discrimination and information gain. J. King Saud Univ. Comput. Inf. Sci. 34 (10), 9464–9477 (2022)
Elayan, O.N., Mustafa, A.M.: Android malware detection using deep learning. Procedia Comput. Sci. 184 , 847–852 (2021)
Syrris, V., Geneiatakis, D.: On machine learning effectiveness for malware detection in android OS using static analysis data. J. Inf. Secur. Appl. 59 , 102794 (2021)
Idrees, F., Rajarajan, M., Conti, M., Chen, T.M., Rahulamathavan, Y.: Pindroid: a novel android malware detection system using ensemble learning methods. Comput. Secur. 68 , 36–46 (2017)
Rehman, Z.-U., Khan, S.N., Muhammad, K., Lee, J.W., Lv, Z., Baik, S.W., Shah, P.A., Awan, K., Mehmood, I.: Machine learning-assisted signature and heuristic-based detection of malwares in android devices. Comput. Electr. Eng. 69 , 828–841 (2018)
Martín, A., Lara-Cabrera, R., Camacho, D.: Android malware detection through hybrid features fusion and ensemble classifiers: the andropytool framework and the omnidroid dataset. Inf. Fusion 52 , 128–142 (2019)
Navarro, L.C., Navarro, A.K., Grégio, A., Rocha, A., Dahab, R.: Leveraging ontologies and machine-learning techniques for malware analysis into android permissions ecosystems. Comput. Secur. 78 , 429–453 (2018)
Milosevic, N., Dehghantanha, A., Choo, K.-K.R.: Machine learning aided android malware classification. Comput. Electr. Eng. 61 , 266–274 (2017)
Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: Dl-droid: deep learning based android malware detection using real devices. Comput. Secur. 89 , 101663 (2020)
Cai, L., Li, Y., Xiong, Z.: Jowmdroid: android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Comput. Secur. 100 , 102086 (2021)
Badhani, S., Muttoo, S.K.: Cendroid-a cluster-ensemble classifier for detecting malicious android applications. Comput. Secur. 85 , 25–40 (2019)
Alqatawna, J., Ala’M, A.-Z., Hassonah, M.A., Faris, H., et al.: Android botnet detection using machine learning models based on a comprehensive static analysis approach. J. Inf. Secur. Appl. 58 , 102735 (2021)
Sheen, S., Anitha, R., Natarajan, V.: Android based malware detection using a multifeature collaborative decision fusion approach. Neurocomputing 151 , 905–912 (2015)
Jannath Nisha, O.S., et al.: Detection of malicious android applications using ontology-based intelligent model in mobile cloud environment. J. Inf. Secur. Appl. 58 , 102751 (2021)
Song, J., Han, C., Wang, K., Zhao, J., Ranjan, R., Wang, L.: An integrated static detection and analysis framework for android. Pervasive Mob. Comput. 32 , 15–25 (2016)
Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B.: Vetting undesirable behaviors in android apps with permission use analysis. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 611–622 (2013)
Yang, S., Zeng, Z., Song, W.: Permdroid: automatically testing permission-related behaviour of android applications. In: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 593–604 (2022)
Thiyagarajan, J., Akash, A., Murugan, B.: Improved real-time permission based malware detection and clustering approach using model independent pruning. IET Inf. Secur. 14 (5), 531–541 (2020)
Qaisar, Z.H., Li, R.: Multimodal information fusion for android malware detection using lazy learning. Multimedia Tools Appl. 1–15 (2022)
Appice, A., Andresini, G., Malerba, D.: Clustering-aided multi-view classification: a case study on android malware detection. J. Intell. Inf. Syst. 55 , 1–26 (2020)
Zhu, H.-J., Jiang, T.-H., Ma, B., You, Z.-H., Shi, W.-L., Cheng, L.: Hemd: a highly efficient random forest-based malware detection framework for android. Neural Comput. Appl. 30 , 3353–3361 (2018)
Altaher, A.: An improved android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (ehnfc) and permission-based features. Neural Comput. Appl. 28 , 4147–4157 (2017)
Su, X., Shi, W., Qu, X., Zheng, Y., Liu, X.: Droiddeep: using deep belief network to characterize and detect android malware. Soft. Comput. 24 (8), 6017–6030 (2020)
Mahindru, A., Sangal, A.: Mldroid-framework for android malware detection using machine learning techniques. Neural Comput. Appl. 33 (10), 5183–5240 (2021)
Dehkordy, D.T., Rasoolzadegan, A.: A new machine learning-based method for android malware detection on imbalanced dataset. Multimedia Tools Appl. 80 , 24533–24554 (2021)
Nguyen, D.V., Nguyen, G.L., Nguyen, T.T., Ngo, A.H., Pham, G.T.: Minad: multi-inputs neural network based on application structure for android malware detection. Peer-to-Peer Network. Appl. 1–15 (2022)
Taheri, R., Javidan, R., Pooranian, Z.: Adversarial android malware detection for mobile multimedia applications in iot environments. Multimedia Tools Appl. 80 , 16713–16729 (2021)
Mahesh, P.S., Hemalatha, S.: An efficient android malware detection using adaptive red fox optimization based CNN. Wireless Pers. Commun. 126 (1), 679–700 (2022)
Firdaus, A., Anuar, N.B., Razak, M.F.A., Sangaiah, A.K.: Bio-inspired computational paradigm for feature investigation and malware detection: interactive analytics. Multimedia Tools Appl. 77 , 17519–17555 (2018)
Shrivastava, G., Kumar, P.: Intent and permission modeling for privacy leakage detection in android. Energy Syst. 13 (3), 567–580 (2022)
Varsha, M., Vinod, P., Dhanya, K.: Identification of malicious android app using manifest and opcode features. J. Comput. Virol. Hack. Tech. 13 , 125–138 (2017)
Deypir, M.: Entropy-based security risk measurement for android mobile applications. Softw. Comput. 23 (16), 7303–7319 (2019)
Mahindru, A., Sangal, A.: Semidroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches. Int. J. Mach. Learn. Cybern. 12 , 1369–1411 (2021)
Keyvanpour, M.R., Barani Shirzad, M., Heydarian, F.: Android malware detection applying feature selection techniques and machine learning. Multimedia Tools Appl. 82 (6), 9517–9531 (2023)
Razak, M.F.A., Anuar, N.B., Othman, F., Firdaus, A., Afifi, F., Salleh, R.: Bio-inspired for features optimization and malware detection. Arab. J. Sci. Eng. 43 , 6963–6979 (2018)
Xie, N., Wang, X., Wang, W., Liu, J.: Fingerprinting android malware families. Front. Comp. Sci. 13 , 637–646 (2019)
Mahindru, A., Sangal, A.: Hybridroid: an empirical analysis on effective malware detection model developed using ensemble methods. J. Supercomput. 77 , 8209–8251 (2021)
Ali, T., Khan, Y., Ali, T., Faizullah, S., Alghamdi, T., Anwar, S.: An automated permission selection framework for android platform. J. Grid Comput. 18 , 547–561 (2020)
Sun, J., Yan, K., Liu, X., Yang, C., Fu, Y.: Malware detection on android smartphones using keywords vector and SVM. In: 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), pp. 833–838. IEEE (2017)
AlJarrah, M.N., Yaseen, Q.M., Mustafa, A.M.: A context-aware android malware detection approach using machine learning. Information 13 (12), 563 (2022)
Gharib, A., Ghorbani, A.: Dna-droid: A real-time android ransomware detection framework. In: Network and System Security: 11th International Conference, NSS 2017, Helsinki, Finland, 21–23 Aug 2017, Proceedings 11, pp. 184–198. Springer (2017)
Sun, L., Wei, X., Zhang, J., He, L., Philip, S.Y., Srisa-an, W.: Contaminant removal for android malware detection systems. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1053–1062. IEEE (2017)
Wu, Y., Li, M., Zeng, Q., Yang, T., Wang, J., Fang, Z., Cheng, L.: Droidrl: feature selection for android malware detection with reinforcement learning. Comput. Secur. 128 , 103126 (2023)
Tang, B., Da, H., Wang, B., Wang, J.: Mudroid: android malware detection and classification based on permission and behavior for autonomous vehicles. Trans. Emerg. Telecommun. Technol. 34 (11), 4840 (2023)
Zyout, M., Shatnawi, R., Najadat, H.: Malware classification approaches utilizing binary and text encoding of permissions. Int. J. Inf. Secur. 1–26 (2023)
Bai, Y., Chen, S., Xing, Z., Li, X.: Argusdroid: detecting android malware variants by mining permission-API knowledge graph. Sci. China Inf. Sci. 66 (9), 1–19 (2023)
Banik, A., Singh, J.P.: Android malware detection by correlated real permission couples using FP growth algorithm and neural networks. IEEE Access (2023)
Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., Ahn, G.-J.: Uncovering the face of android ransomware: characterization and real-time detection. IEEE Trans. Inf. Forensics Secur. 13 (5), 1286–1300 (2017)
Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with java implementations. ACM SIGMOD Rec. 31 (1), 76–77 (2002)
Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109. IEEE (2012)
Fan, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng, Q., Liu, T.: Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Trans. Inf. Forensics Secur. 13 (8), 1890–1905 (2018)
Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current android malware. In: Detection of Intrusions and Malware, and Vulnerability Assessment: 14th International Conference, DIMVA 2017, Bonn, Germany, 6–7 July 2017, Proceedings 14, pp. 252–276. Springer (2017)
Abdul Kadir, A.F., Stakhanova, N., Ghorbani, A.A.: Android botnets: what URLs are telling us. In: Network and System Security: 9th International Conference, NSS 2015, New York, NY, USA, 3–5 Nov 2015, Proceedings 9, pp. 78–91. Springer (2015)
Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark android malware datasets and classification. In: 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–7. IEEE (2018)
Andronio, N., Zanero, S., Maggi, F.: Heldroid: dissecting and detecting mobile ransomware. In: Research in Attacks, Intrusions, and Defenses: 18th International Symposium, RAID 2015, Kyoto, Japan, 2–4 Nov 2015. Proceedings 18, pp. 382–404. Springer (2015)
Jang, J.-W., Kang, H., Woo, J., Mohaisen, A., Kim, H.K.: Andro-autopsy: anti-malware system based on similarity matching of malware and malware creator-centric information. Digit. Investig. 14 , 17–35 (2015)
Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E.: Mining apps for abnormal usage of sensitive data. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 426–436. IEEE (2015)
Damshenas, M., Dehghantanha, A., Choo, K.-K.R., Mahmud, R.: M0droid: an android behavioral-based malware detection model. J. Inf. Privacy Secur. 11 (3), 141–157 (2015)
Arslan, R.S.: Androanalyzer: android malicious software detection based on deep learning. PeerJ Comput. Sci. 7 , 533 (2021)
Mahdavifar, S., Kadir, A.F.A., Fatemi, R., Alhadidi, D., Ghorbani, A.A.: Dynamic android malware category classification using semi-supervised deep learning. In: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 515–522. IEEE (2020)
Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an extended insight into the obfuscation effects on android malware. Comput. Secur. 51 , 16–31 (2015)
Python, W.: Python. Python Releases for Windows 24 (2021)
Download references
Author information
Authors and affiliations.
Department of Applied Mathematics, Delhi Technological University, Delhi, 110042, India
Yash Sharma & Anshul Arora
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Yash Sharma .
Ethics declarations
Conflict of interest.
The authors declare that they have no conflict of interest
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Sharma, Y., Arora, A. A comprehensive review on permissions-based Android malware detection. Int. J. Inf. Secur. 23 , 1877–1912 (2024). https://doi.org/10.1007/s10207-024-00822-2
Download citation
Published : 04 March 2024
Issue Date : June 2024
DOI : https://doi.org/10.1007/s10207-024-00822-2
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Android security
- Android malware
- Permissions based detection
- Static detection
- Mobile security
- Literature review
Advertisement
- Find a journal
- Publish with us
- Track your research
IMAGES
COMMENTS
The correlative research on Android malware collected in this paper can provide valuable reference and broaden the research direction for future researchers. ... However, after a comprehensive research of Android malware detection, there are still some challenges in future research, for example, the vulnerability of Android detectors to ...
In this paper, the Android OS environment, feature selection, classification models, and confronted challenges of machine learning detection are described in detail.
In this paper, we propose a new system using machine learning classifiers to detect Android malware, following a mechanism to classify each APK application as a malicious or a legitimate application. The system employs a feature set of 27 features from a newly released dataset (CICMalDroid2020) containing 18,998 instances of APKs to achieve the ...
This paper provides a systematic review of ML-based Android malware detection techniques. It critically evaluates 106 carefully selected articles and highlights their strengths and weaknesses as well
This paper provided a comprehensive review of machine learning techniques and their applications in Android malware detection as found in contemporary literature.</p Classification process in ...
The research effort for Android malware detection solutions has focused on the optimization of performance metrics, which aligns with the primary objective of the application of AI to cyber security issues, generating increasingly complex architectures adopted from other AI application domains to deal with the Android malware detection problem ...
Android malware detection approaches can be divided into static, dynamic, and hybrid analysis [9]. The Static analysis extracts the features from Android application without running them into a device or Android emulator. ... The difference between this paper and the rest of the research mentioned above lies in the fact that the data used are ...
Android applications are developing rapidly across the mobile ecosystem, but Android malware is also emerging in an endless stream. Many researchers have studied the problem of Android malware detection and have put forward theories and methods from different perspectives. Existing research suggests that machine learning is an effective and promising way to detect Android malware ...
The main contributions of this work are highlighted below: We perform this CLR using a vast dataset of 205 research papers that aim to use permissions for Android malware analysis/detection, almost covering the advent of Android OS [] and the first malware in 2009 to the current research scenario in 2023 [].Apart from obtaining information about the usage and permission-based techniques, we ...
With the increasing use of mobile devices, malware attacks are rising, especially on Android phones, which account for 72.2% of the total market share. Hackers try to attack smartphones with various methods such as credential theft, surveillance, and malicious advertising. Among numerous countermeasures, machine learning (ML)-based methods have proven to be an effective means of detecting ...